Boron Nitride Nanotubes for Spintronics

نویسندگان

  • Kamal B. Dhungana
  • Ranjit Pati
چکیده

With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical tuning of spin current in a boron nitride nanotube quantum dot.

Controlling spin current and magnetic exchange coupling by applying an electric field and achieving high spin injection efficiency at the same time in a nanostructure coupled to ferromagnetic electrodes have been the outstanding challenges in nanoscale spintronics. A relentless quest is going on to find new low-dimensional materials with tunable spin dependent properties to address these challe...

متن کامل

Theoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes

In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...

متن کامل

Doping finite-length carbon and boron nitride nanotubes with aluminium atom: A thermodynamic semiempirical investigation

The doping reaction of truncated boron nitride and carbon nanotubes with aluminium atom wastheoretically investigated. The AM1, PM3, and PM6 semiempirical methods have been used toevaluate the thermochemistry of doping reactions of single walled boron nitride nanotubes andcarbon nanotubes. The enthalpy changes, Gibbs free energy changes, and entropy changes of studieddoping reactions were evalu...

متن کامل

Symmetry breaking in boron nitride nanotubes.

We have imaged boron nitride nanotubes with atomic scale resolution using scanning tunneling microscopy. While some nanotubes show the expected triangular lattice pattern, the majority of the nanotubes show unusual stripe patterns which break the underlying symmetry of the boron nitride lattice. We identify the origin of the symmetry breaking and demonstrate that conventional STM imaging analys...

متن کامل

Investigating the Effects of Molecular Oxygen Impurity on the Quadrupole Coupling Constants of Boron Nitride Nanotubes: Computational Studies

Density functional theory (DFT) calculations have been performed to investigating the effects of themolecular oxygen impurity on the quadrupole coupling constant (Qcc) parameters of armchair and zigzagboron nitride nanotubes (BNNTs). Optimization processes have been performed to relax the original andimpure structures of the investigated BNNTs. Afterwards, the Qcc parameters have been evaluated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014